MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.



 ψψ     [ / ]   /[

][   ) [ 

,] / [    ]     .




ψ        / [ [ []

  ] ]    .




   / ]]   ) [[ ][

]ψ] ]  .



 ψ   / [ [ ] [

]   ] ] 
ψ] /    .



ψ  /     / [ ]  []

  ) [[ ]]ψ] .   . 





ψ         [ [ ] [

] ] 
ψ]   .





 ψ        [ [ ][

ψ]]   .




ψ       / [ [ ] []] ]    .






ψ   / [ [ ]]

]ψ] /     .




*  [ ]]

ψ[
] / ] ]] .








    [[ ]]/

] [
]ψ [] .





ψ [[ ]]

 ]ψ]/ ]  .










  / [ [ ]]]  ψ ]  .




ψ      [  [ ] 

][   ψ ] / ]    .






ψ     []

   ]] /      [[ ]]     .






ψ  [[[ ]]  ) [

ψ []]










ψ     [ [[ ]]

  )[] /  ψ     .





   [[ ]] /   )[

, ] / ψ   .




Na física quântica, a amplitude de dispersão é a amplitude de probabilidade da saída onda esférica[1] em relação à onda plana de entrada no processo de dispersão do estado estacionário[2] .

Este processo de dispersão é descrito pela seguinte função de onda

onde  é o vetor de posição;  é a onda plana de entrada com o número de onda k ao longo do eixo z é a onda esférica de saída; θé o ângulo de dispersão; e  é a amplitude de espalhamento. A dimensão da amplitude de dispersão é o comprimento.


A amplitude de dispersão é uma amplitude de probabilidade; a secção transversal do diferencial como uma função de ângulo de dispersão é dado como o seu módulo quadrado[3],




Relações de dispersão para o vácuo

Fato curioso e de relevância na mecânica quântica é que, ao passo que o vácuo é um meio não dispersivo para ondas eletromagnéticas (as assim chamadas velocidades de fase são iguais à velocidade de grupo em um pulso eletromagnético — todos com velocidades iguais à "c", a velocidade da luz), o vácuo é um meio dispersivo para ondas de matéria (funções de onda), a velocidade de fase dependendo do momento segundo a relação [3]:

 para partículas livres (ondas de matéria planas).

Repare que a velocidade (real) esperada para a partícula não é a velocidade de fase de uma onda plana de matéria (partícula livre), mas sim a velocidade de grupo das ondas que formam o pacote de ondas associado à partícula, a velocidade de grupo obedecendo relação bem mais similar à esperada classicamente:

na qual,  é a constante reduzida de Planck, p é o módulo do momento e k o número de onda atrelados à partícula em questão.

Comentários

Postagens mais visitadas deste blog